
Heat transfer in specularly reflecting tubes 
J. C. Dixon*  

Heat exchange inside a specularly reflecting tube is analysed. Expressions are 
obtained for heat transfer between cross-sections, between incremental wall 
annuli, between finite wall annuli, and combinations of the above. The expressions 
are related to the angle factor for opposed discs, but are infinite summations; they 
are easily evaluated, requiring some 20 emissivity terms. The basic disc-to-disc 
expression also represents the fraction of radiation leaving a disc that is still 
propagating at some distance along the tube, including reflection. Special case 
results are obtained for the radiant loss from double and single ended holes. For the 
practical application considered, it was found that conduction and radiation could 
be treated separately, permitting evaluation of a radiation loss factor for a 
specularly reflecting tube between two heat reservoirs 
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The problem analysed here is the radiant exchange of heat 
in a specularly reflecting tube between two black body 
reservoirs, and from point to point of the tube itself. This 
was motivated by a specific engineering application, in 
minimising heat losses from a satellite attitude control 
thruster (a thermal storage resistojet), where a small heat 
exchanger, 5 mm diameter and 15mm long, is to be 
maintained at high temperature, eg 1000°C or more, on a 
very small power input, eg 5 W. The heat-exchanger 
nozzle unit is fed with occasional pulses of gas through a 
feed pipe of 2-3 mm diameter and 50-70mm long. 
When all other heat losses are closely controlled, the 
radiant heat flux along the feed pipe becomes significant. 
The outside of the heat-exchanger nozzle unit and feed 
pipe are provided with extremely high performance 
thermal insulation taking advantage of the vacuum of 
space. The analysis here therefore neglects radiation from 
the outside surface of the tube. Consideration is, however, 
given to conduction, and to its interaction with the 
radiation. End conditions are such that the use of black 
body end planes for the model tube is probably a good 
approximation. 

The condition of specular reflection is of interest as 
a possible improvement on a diffusely reflecting surface, 
and because some associated test equipment had been so 
equipped. 

Real problems in radiative heat transfer are usu- 
ally concerned with diffusely reflecting high emissivity 
surfaces. The methods which have been developed to 
handle such problems usually rely on an assumption of 
diffuse reflection. Those that do not assume this have 
usually been valid only for low reflectivities 1-9. A well 
finished metal surface, however, is of rather low emissivity 
and exhibits dominantly specular reflection I o and, there- 
fore, traditional techniques are not applicable. The fol- 
lowing analysis is unusual in that it makes the specific 
assumption of specular reflection, and is valid for all 
values of emissivity. 
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Direct tube radiation 
A circumscribing sphere of radius R contains diametri- 
cally opposed blackbody discs of radius r (Fig 1). If the 
internal surface of the sphere is a Lambertian emitter, the 
direct radiation between any two areas is proportional to 
the product of the areas. This is uniform self-irradiation, 
and is known as Sumpner's theorem 11. Specifically: 

P = W S 1 S 2 / S s  

where S 1 = $2 = 2rrR(R  - a/2) ,  the area of a spherical cap, 
S s =4rrR 2 and W = a T  4. This initially surprising result is 
easily confirmed, and is due to an exact compensation of 
angle and distance. 

Now, because we are postulating black body sur- 
faces, the radiant interchange between the two discs must 
be equal to that between the two spherical caps behind 
them (Walsh's thegrem12). Therefore, between the two 
discs: 

P = W [ 2 ~ R ( R  - a /2)]2/ (4~zg 2) 

= ~ W ( R  --  a/2) 2 

= ~Z W ( R  2 - R a  + a2/4) 

1 
Fig  1 

I a/2 
o 

C y l i n d e r  s ec t ions  a n d  spher ica l  caps  
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Using: 

R 2 = r 2 + a 2 / 4  

P = Ir W[r 2 + ½a 2 - a(r 2 + ¼a2) 1/2] 
The proportion of the radiation from one surface which is 
directly intercepted by a second surface is known as the 
angle (or view) factor, which we denote H, ie: 

P =  W S 1 H I 2  

In this case: 

n = P/(nr 2 W) 

= 1 +~(a/r) 2 -  (a/r)(1 +~(a/r)2) 1/2 

or, writing z=a/r ,  ie z is the non-dimensionalised axial 
position: 

I4= t + ½z2-(z2 + lz')'/2 

This has the approximate form of an exponential decay 
with characteristic length 1.0. It is true for the two discs in 
any non-obstructing and non-reflecting environment, and 
is a known expression 3. 

Now any radiation passing an imaginary disc at a 
(Fig 2) would be absorbed by blackbody surfaces of the 
disc at a+6a  and the annulus between. Therefore the 
angle factor for the annulus is equal to the difference 
between the angle factors of the two discs (Bartlett's 
theorem~3). Denoting the angle factor from a disc to an 
incremental co-cylindrical annulus by I: 

I =  - S H  

dH 
- -  6 z  

dz 

= - H'6z 

It is worth noting, in passing, that: 

6S 
I = - H ' - -  

2~tr 

where 6S is an incremental area. Because of the symmetry 
of the disc and tube, this last expression is true for any 
incremental area at z, not just an annulus. 

The angle factor from incremental annulus to disc, 
J, may be derived using the reciprocity theorem: 

S1 HI 2 = $2H2 t 

Fig 2 
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ie: 
6SJ = nr2l 

2nrt~aJ = nr2 I 

__1 r " 

r 

J =  -½H'  

and black body heat transfer: 

P =  WS1H12 

tiP = W2nrSa ( -  ½H') 

6P = - l~r 2 WH'6z  

The angle factor K between two incremental annuli (Fig 3) 
is given by the difference between two annulus-to-disc 
values: 

6 P =  2 n r f a t  W K 1 2  

5P = 2~r6a 1 W [ J ( z ) -  J(z + 6z)] 

dJ  
KI2----- - ~ 6 z  2 

=½n"6z2 

Also, by symmetry: 

KI2 =½H"6z x 

Notat ion 

a Disc spacing, m 
H Angle factor 
I Disc to annulus angle factor 
J Annulus to disc angle factor 
K Annulus to annulus angle factor 
n Number of reflections 
P Radiant power, W 
r Cylinder radius, m 
R Sphere radius, m 
S Surface area, m 2 
U Reference power (/rr20"T4), W 
W a T  4, W/m 2 
y Non-dimensional annulus length 
z Non-dimensional axial position 

e Emissivity 
p Reflectivity 

S u b s c r i p t s  

AB Range of z, eg PAB 
b Of base, eg gb 
B From base, eg PB 
d Of disc, eg ed 
e Effective, referred to exit area, eg ee 
m Tube annulus count, eg raP. 
n Number of reflections, eg P.  
s Specular, eg H,, or of sphere, eg S, 
z Limiting axial position, eg P= 
1 Of area or disc l, eg S 1 
12 From area 1 to area 2, eg H I 2  
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Fi9  3 Dimens ions  f o r  i ncremen ta l  annul i  

The black body heat transfer is: 

5 P  = 2 n r r 6 z  I W{H'tt~z2 
= l~r 2 W H " O z  1 (~z2 

Writing: 

U =/zr 2 W =/zr20 "T14 

the disc to disc radiation is: 

P =  WStH12 
= n r  2 W H  = U H  

The disc to annulus radiation is: 

3 P =  WS1Ha2 

= ~r  2 W (  -- H ' 6 z )  

= -- U H ' 6 z  

The annulus to disc radiation is: 

6 P =  W 2 n r 6 a t ( -  ½H') 

= W x r Z 2 6 z a ( -  ½H') 

= - U H ' f z  1 

The annulus to annulus radiation is: 

6 P =  W 2 n r 6 a l ½ H " f z 2  

= W n r 2 2 6 z 1 ½ H " f z 2  

= U H " 6 z 1 6 z  2 

Summarising: 

H(z)= 1 +~z 2 - t z  2 +~z+) 112 

H'(z)  = z - ( -  72 + 2)(Z .2 + 4)- 1/2 

H"(z)  = 1 - (z 3 + 6Z)(Z 2 + 4)- 3/2 

and we have the following black body heat transfer 
equations: 

U = nr2a  T 4 

I = - H ' 6 z  

J = - ½ H ' f z  

K = ½H"6z2 

Disc to disc P = U H  

Disc to annulus~ 
Annulus to discJ 5 P =  - U H ' 6 z  

Annulus to annulus 6 P =  U H " 6 z ~ 6 z 2  

These equations have been published in rather different 
form before, but here are in a form convenient for the next 
task. 

Specular reflection 
It is now possible to derive equations describing the 
transmission of radiant heat within a tube including the 
effects of specular reflection. Consider a specularly reflect- 
ing tube of radius r, with an incremental annulus 6a = r6z  
acting as a Lambertian source, of emissivity e at tempera- 
ture T(Fig 4). The energy passing a plane at distance a = rz 
from the source, after n reflections is 6P , :  

5 P o  = - e U H ' ( z ) 6 z  

Now consider any ray leaving 6a. Where it strikes the tube 
wall it makes a specular (symmetrical) reflection, and 
therefore between each successive reflection it will pro- 
ceed an unchanging distance both axially and circumfer- 
entially. Therefore, any ray making its first reflection at a 
distance greater than a /2  from the source annulus will 
pass the plane at a without further reflection. Therefore, 
for rays making a single reflection, the power is: 

6P1 = - e U [ H ' ( z / 2 )  - H'(z ) ]6z  x p 

where p (=  1 - e )  is the reflectivity, causing a power loss. 
By the same arguments, applied to rays making more 
reflections; 

6 P ,  = - e U p"[H ' ( z / (n  + 1)) - H ' (z /n)]  

The total power is: 

6 P = 6 P o + f P 1  + 6 P  2 + ... 

= - e UH' ( z )6z  - e U p [ H ' ( z / 2 ) -  H ' ( z ) ]6z  - . . .  

= - e U 6 z { H ' ( z )  + p [ H ' ( z / 2 ) -  H'(z)] + . . .  

+ p"[rI'(z/(n + 1)) - U'(z /n) ]  + . . .  } 

= - eU6z(1  - p) {H'(z) + pH' ( z /2 )  + . . .  

+ p " H ' ( z / ( n  + 1)) + . . .  } 

= - e U 6 z  ~ ( 1 - - p ) p " - l H ' ( z / n )  
n = l  

= -  U 6 z  ~ s2(1-s)"-lH'(z/n) 
n = l  

Therefore the total transfer from the annulus, including 
specular reflection, to a black body disc is: 

6 P  = - UH~Sz  

where: 

H~(z,e)= ~ e2(1-e)"-lH'(z/n) 
n=l  

Now, if the absorbing disc in the above analysis becomes a 
grey body heat source at emissivity ed, we may write that 

I 
Fig  

i l 

4 P o w e r  con t r ibu t i ons  f o r  var ious  numbers  o f  

re f lec t ions  
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the heat transferred from the disc to the annulus is, 
making use of the reciprocity theorem: 

6P = - ed UH~6z 

dP  
dz - ea UH~ 

The heat adsorbed into the tube between z = A and z = B  is 
then 

B 
t ~  

PAB = [ -- ed UH'~dz 
e3 

z = A  

B 

A 
B 

A 

The above interchange of summation and integration has 
a physical meaning. With the summation under the 
integral, we are first finding the total heat transfer, by any 
number  of reflections, to an element, and then integrating 
over all elements. With the integral under the summation, 
we integrate the heat transfer for each number  of re- 
flections separately, and then sum them. Either is physi- 
cally acceptable. 

oO 

PA.  = - -  ea U~,, {e2(1 - e)" - 'n[H(zfn)]~} 
1 

oo 

= ~d U Z { ~2(1 - -  ,~)n - l n E H ( z / n ) ] A  } 
1 

In the particular case of A --0 and B = z :  
(X3 

Poz = ed U Z e2( 1 - e)" - ' n [ H ( 0 ) -  H(z/n)] 
1 

oO 

= edU Z ez( 1 - -  e)" - ' n [ 1  - -  Htz/n)] 
1 

=edU e2(1 - e)"- i n -  ~ e2(1 -e)"- lnI-I(z /n)  
1 

=eaU 1 - ~ e z ( 1 - e ) " - l n H ( z / n )  
1 

giving: 

P0z = ed U[ 1 - H~} 

where: 

H s =  ~ e2(1-e )" - lnH(z /n )  
n = l  

and the previously defined H~ = dHJdz ,  correctly. 
Also for the particular case of A = z and B = ~ : 

P~ = ed UH~ 

The total emission from the source disc is edU. The 
function H~(z,e) represents the proport ion of radiation 
propagating further than rz from the source disc, includ- 
ing specular reflection. Also, if we imagine a blackbody 
disc at rz, ed UHs is the radiation flux from one disc to the 
other, including reflection. 

H e a t  t r a n s f e r  in s p e c u l a r l y  r e f l e c t i n g  t u b e s  

U = g r 2 t x T  4 will be evaluated for the source disc. 
The value of e used for the walls should be that one 
appropriate  to the source disc temperature. 

In summary,  so far we have established that the 
radiation flux from a disc to a co-cylindrical annulus with 
tubular specular reflection is given by: 

6P = - ed UH's6Z 

o r :  

dP 
dz - 8dUH~ 

where: 

U = 7rr2aT 4 

and: 

H~= ~, e2(1-e)"- lH' (z /n)  
n = l  

The flux from one disc to a second, black body, one (ie the 
radiation passing further than rz) is: 

P = ed UHs 

where: 

Hs= ~ e2(1-e )" - lnH(z /n)  
n = l  

Hs is fully analogous with H. 

A n n u l u s  t o  a n n u l u s  

In order to evaluate heat transfer from the walls of the 
tube, it is necessary to establish heat transfer rates 
between finite sized annuli at arbitrary spacing. Energy 
from annulus dz passing disc 1 including specular re- 
flection (Fig 5) is: 

6P = - UH~6z 

---- - -  U ~,  e2(1 - e ) " - lH ' ( z /n )  
n = l  

The total power from annulus ry 1 through disc 1 is: 

zl +y~ 

Psi = - U ~ e2(1 - e)" - I H'(z/n)dz 
1 

z l  

SO: 
oo 

Ps, ---- e2 U ~ n(1 - e)" - l [H(z l /n  ) - H((z 1 + y,)/n)] 
1 

also: 
oO 

Ps2 = e2 U ~ n(1 - e)" - 1 [H((zt + y2) /n) -  
1 

- H ( ( z l  + Yl +y2)/n] 

Fig 5 

r d z  I 2 

" T 1 t 4 ~  r z  L 

I I  
I I  2 r  

II  
I I  
oi o, o, a 

Dimensions for finite annuli 

(' 
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The heat transfer to annulus ry 2 is P s i - P s 2 = P s  where: 

Ps = e 2 U ~ n(1 - e)" - 1 [H(z 1/n) - H((z x + Y, )/n) 
n = l  

- H((zl + y2)/n) + H((zl + Y, + y2)/n] 

Ps = U [ n s ( z l / n ) -  Hs((zl + Yl)/n) 

- ns((Z 1 + y2)/n) + ns((Z 1 + Y 1 + Y2)/n) 

In the case when y, = Yz = Y  and z 1 = ( m -  1)y (m integer), 
the tube is divided into a number  of equal size segments: 

This form of the equation is ideal for numerical (ie 
computer)  evaluation of the heat transfer. 

Where the radiation is passing along a non-  
isothermal tube it is necessary to consider the effect of 
variation of reflectivity with temperature. Fortunately,  
the reflectivity of a surface at temperature T2 to radiation 
whose spectral distribution is characterised by T, is 
effectively a function of T~ only. Therefore the radiation 
from an element at T 1 is distributed along the tube 
according to the function Hs(z, e) where e = e(T O. The rate 
of  heat transfer from any particular element may therefore 
be found without  reference to any temperature other than 
that of  the source, a very impor tant  simplification. 

Radiat ion loss f rom an isothermal  hole 

The source is an isothermal cylindrical hole, specularly 
reflecting, with emissivity e on the wall, and ~b on the base 
(Fig 6). If Pw, is the radiation from the wall which escapes 
without  reflection from the base, Pwz the radiation from 
the wall which escapes after reflection from the base, and 
P ,  the radiation from the base which escapes, with or  
without  reflection: 

6Pwl = - UH~dz 
a / r  

t • 

Pwl = t - UH~dz 
LI 

0 

= - U [ H y o / "  

= U(H,(O)- Hs(z)) 

• ". Pw, = U(1-Hs(z , ,e ) )  

2 a / r  
t~ 

Pwz = PB t -- UH'~dz 
ml 

a i r  

=p.u[nJ l:l, 
.'. Pw2=pBU(Hs(Zl ,e) -Hs(2zl ,e) )  

PB=saUH,(z l ,e )  

P = Pwl + Pw2 + PB 

= U[(1 - Hs(zl,e)) + PB U(ns(gl ,~) 

-- ns(2zl,e)) + eBun~(zl,e)] 

= U[(1 - H~(zl,e)) + pBns(zx,e) 

-- Palls( 2z 1, e) + %Hs(Zl, e)] 

P = U(1 - paH~(2z,e)) 

ee = 1 - (1 - ea)Hs(2Z, e) 

where ee is the effective emissivity on the exit plane area. 
Two cases of special interest are: 

1. eB = 1 : e~ = 1, independent of e ( as expected) 

2. eB=e: e~= 1 - ( 1  -e)H~(2zl ,e)  

Radiat ion loss f r o m  a double-ended 
isothermal  hole 

The loss from each end (Fig 7) is: 

PI - UH'~dz 

0 

= - U[Hs]~ 

= U[Hs(0 ) -  Hs(z)] 

= U(1 - Us(z)) 

The total loss is P = 2P 1 • 

P = 2 U ( 1  -Hs(z ) )  

~e = 1 - Hs(z) 
based on a total exit area of 2nr z. 

_ \ 
6 

F =z,. -I 

Fig 7 Circular 
cylindrical perforation 

2/" 

l 
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Fig 8 Specular view factor H, versus axial distance 
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Evaluat ion of H f u n c t i o n s  

In order to utilise the equations developed above, it is 
necessary to evaluate the H functions. H(z), H'(z) and 
H"(z) are found by direct substitution. H, is the sum of an 
infinite series which is easily evaluated by computer 
(Fig 8). 

App l i ca t i ons  

The equations for emissivity of isothermal holes and 
evaluation of H, have already been presented, permitting 
immediate use. However, the main application of the 
above theory to the thermal storage resistojet is to 
evaluate the radiation loss in the non-isothermal feed 
pipe. This may be modelled by a tube between two heat 
reservoirs. Some assumption must be made regarding the 
tube-reservoir interface, and this has been taken to be 
equivalent to a blackbody disc at the reservoir tempera- 
ture. If the tube is now divided into a number of equal 
sized elements, the equations presented above may be 
used to compute the radiant heat exchange between the 
elements, and between the elements and ends, and also 
directly from end to end, under some assumption of 
temperature distribution. The final heat flux for each 
element may then be used to give a new estimate of the 
temperature distribution, iteration continuing until speci- 
fied tolerances on element heat flux balance and un- 
iformity of total heat flux are established. Conduction and 
external radiation may be included as required. The metal 
thermal conductivity has been included as a function of 
temperature which may be changed for different ma- 
terials. For  rhenium, k=0.04 W/mmK has been used. 

For  realistic thermal storage resistojet values, 
when a complete calculation including conduction and 
internal radiation is performed, the result is an almost 
identical loss to that obtained by calculating radiation 
and conduction independently. This is very useful because 
a radiation loss factor (loss/nr2tr(T~-T~)) may be eva- 
luated as a function of e and z without reference to 
associated conduction. The results are presented graphi- 
cally in Fig 9. This makes a useful estimate of the radiation 
loss available without repeated computing. 

It is notable in these figures that a lower emissivity 
gives a higher loss. For  radiation exchange from an 
element of the tube, the emitted power is proportional to e, 
and the axial distance travelled before absorption, is, 
broadly, inversely proportional to e, so the effective 
transfer would be insensitive to e. However, with a 
black body source, as at the ends, the low emissivity 

1.0 

% 
k - -  

o.5 

Heat transfer in specularly reflecting tubes 

o I I 
o 0.5 

c(o t  T,) 

Fig 9 Power transfer versus emissivity 

IO 

allows many reflections before absorption, and hence a 
high heat loss. 

Conclusions 
The radiant heat interchange between cylinder cross 
sections, between wall annuli, and between a cross section 
and an annulus, for the case of a tube with internal 
specular reflection, may be expressed in terms of a 
specular angle (view) factor H, and its derivatives: 

Hs= ~= e2(1--e)"-'n[14-½(z)2--((z)2-F.tn) ) J 
where the term in square brackets corresponds to the 
angle factor for direct radiation only. This is easily 
computer summed, requiring about 20/e terms, regardless 
of z. 

Expressions are easily derived for related heat 
transfer problems with cylindrical specular reflection, 
including a general formulation of heat balance for a 
complete tube. 
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 OOK R[VII[W 
Gas Turbine Combustion 
A. H. Lefebvre 

This book should be compulsory reading for those 
interested in combustion processes. It is directed 
particularly at gas-turbine combustion and brings 
together a wealth of personal knowledge and experience 
within a framework which is sensible and helpful to the 
reader. The approach to the various aspects of the subject 
is a mixture of phenomenological and empirical. 

Of the 11 chapters, two describe basic principles of 
combustors and combustion, two are concerned with the 
aerodynamic characteristics of the flow in diffusers and 
combustors, three with the combustion topics of 
efficiency, stability and injection, one with heat transfer, 
two with fuels and their injection and one with pollution. 
Consistent with the author's main interests, 
approximately half of the book is devoted to the chapters 
dealing with aerodynamics, heat transfer, fuels and their 
injection. Since the basis for the book has been provided 
by a lecture course given and developed at the Cranfield 
Institute of Technology and elsewhere over a period of 
years, it is not surprising that the material is based largely 
on papers and reports which are more than 10 years old. 
An important exception is the material on emissions 
which, necessarily, is more recent. 

The lack of emphasis on more recent material 
means that development arising from numerical methods 
and optical diagnostic techniques tend to be ignored. It 
can be argued, and the author would probably subscribe 
to this view, that these developments have so far done 
little to improve design methods. It is a little odd, 
nevertheless, to end the chapter on aerodynamics with the 
advice that the major aerodynamic problem is one of 
stability, and that the cure may lie in the compressor. 

The text is clear and displays an enthusiasm for the 
subject. As a result, reading is a pleasure and gleaning new 
information an easy matter. There are few books on 
combustion and very few which deal with gas-turbine 
combustion. It is a pleasure to recommend this one to all 
with an interest in the subject. 

J. H. Whi te law 
Imperial College, 

London, U K 

Published, price $39.95, by Hemisphere/McGraw-Hill. Hemisphere 
Publishing Corporation, Berkeley Building, 19 W44th Street, New 
York, NY 10036, USA 
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